SELF-EXPLANATION AND SELF-DRIVING

Leilani H. Gilpin MIT

WHO'S AT FAULT?

WHO'S AT FAULT?

Victim of self-driving Uber accident could be to blame, expert says

USA TODAY NETWORK Ryan Randazzo, The Arizona Republic Published 4:20 p.m. ET March 23, 2018

THE UBER CRASH WON'T BE THE LAST SHOCKING SELF-**DRIVING DEATH**

Tesla said autopilot was activated during a fatal Model X crash last week in California.

WHAT WENT WRONG?

MILL AVENUE

MOEUR PARK

Elaine Herzberg was struck while walking her bike across the street somewhere in this area.

AVENUE

Body seen in this area

The self-driving Uber was traveling north at about 40 m.p.h.

L.H. Gilpin

MARQUEE THEATRE

photo courtesy of the New York Times

WHAT WENT WRONG?

- Who's at fault?
 - Human (safety driver) error
 - Pedestrian error

ABC-15, via Associated Press

WHAT WENT WRONG?

- Unavoidable No way to detect the pedestrian with enough time to swerve out of the way.
- Possibly avoidable Did sensors detect the pedestrian with enough time to swerve out of the way?
- Internal errors Sensors, perception mechanisms, etc. not working as expected?

EX-POST-FACTO EXPLANATION

STORY-TELLING FOR SAFETY

- For autonomous machines to be safe they need to be able to explain themselves
- For autonomous vehicles to be intelligent, they need to understand the action and behavior or their underlying parts

VEHICLE STORIES

- Autonomous agents must be able to provide explanations for the following reasons:
 - in order to be audited
 - to provide an understandable and coherent story which justifies their actions
 - able to be **challenged** in an adversary proceeding
 - if the explanation is inadequate or inappropriate, the agent should either corrected or disabled.

3 MAIN AREAS

Explanations

- Machinery / software
- Machine perception
- Security
 - How can we strengthen vehicle security?

• Accountability

- What are likely [autonomous] vehicle scenarios?
- How will pedestrians react?

• How can we use technology to ensure vehicles can provide evidence?

OUR RESEARCH

- Adapted a game simulation to output a "CAN Bus" log
- Edge detection : When did the operator apply brakes
- Interval analysis: **How** do intervals relate
- Tell a story of **what** happened
- Begin to tell a **why** story

L.H. Gilpin and B.Z.Yuan. "Getting Up to Speed on Vehicle Intelligence." The AAAI 2017 Spring Symposium on Science of Intelligence: Computational Principles of Natural and Artificial Intelligence.

NEED FOR OPEN SOFTWARE

- Availability of code/data to be evaluated
- Software available for accountable development
 - Simulation
 - Error detection and reasoning

OUR DATA

- Controller Area Network log (CAN Bus)
- Easy to hack
 - simple schema
 - schema: time stamp, CAN bus code, extra information
 - connects to all aspects of a car
- Standard

93.79 B3 -24.94 1.15 93.79 120 13 04 50 93.79 244 0.00 93.795 22 0.00 93.795 23 -0.80 93.795 25 0.00 93.795 30 0.00 93.795 B1 81.83 -5.69 93.795 B3 24.24 -56.52 93.795 120 13 04 50 93.795 244 0.00 93.8 22 0.00 93.8 23 0.89 93.8 25 0.00 93.8 30 0.00 93.8 B1 -46.06 -88.97 93.8 B3 21.87 6.62 93.8 120 13 04 50 93.8 244 0.00 93.805 22 0.00 93.805 23 -0.08 93.805 25 0.00 93.805 30 0.00 93.805 B1 -77.20 -5.41 93.805 B3 18.62 -19.38 93.805 120 13 04 50 93.805 244 0.00 93.81 22 0.00 93.81 23 0.21

OUR DATA - UP CLOSE CAN bus code BI - front wheels B3 - rear wheels 120 - drive mode

93.795 BI 81.83 81.83 93.795 B3 24.24 24.24 93.795 I20 I3 04 50

time stamp in seconds

right, left wheel rotation (in km/hr) 13, 50 - Drive 04 - powered

Mechanical systems

Mechanical systems

Tire pressure sensor is anomalous given current state (snow, chains, engine). Check on right back wheel.

Physics systems

==> (explain normal-forces)
REASON: rear-wheels-force decreased AND
its magnitude exceeds the traction
threshold.
Since the rear wheels lost traction
the friction of the contact patches
MUST HAVE decreased;
so, the normal forces MUST HAVE
decreased.
Consistent with the accelerometers.

Physics systems

==> (explain normal-forces)

REASON:

front-wheels-force decreased AND tire pressure is low.

Checking on mechanical system for anomalies ...

Explanatory parking

==> (explain parking)

Approach - within threshold Turn - risky, but within threshold. S-curve complete Parking complete.

Joint work with S. Lu and B.Z. Yuan.

WHAT ABOUT SELF-DRIVING?

- Same mechanics
- Same physics
- New perception
- More sensors

By Guilbert Gates | Source: Google | Note: Car is a Lexus model modified by Google. Uber's sensing system uses similar technology.

SELF-DRIVING SYSTEM DESIGN

EXPLAINING PERCEPTION TWO WAYS

- Motivation A first steps towards understanding machine perception is to constrain the output to be reasonable.
- Two ideas
 - Data representation: ConceptNet
 - Structural representation: Conceptual primitives

METHODS (I)

PRELIMINARY RESULTS(I)

A mailbox crossing the street

Reasonableness monitor

Perception

A mailbox crossing the street

Premises

(mailbox, IsA, heavy object) (mailbox, moves, False) (mailbox, LocatedNear, street)

PRELIMINARY RESULTS(I)

A mailbox crossing the street

input : "Mailbox crossing the
street"

This perception is UNREASONABLE using data from ConceptNet5.

REASONING:

A mailbox is an object typically found near a sidewalk.

Mailboxes cannot cross a street because mailboxes are objects that do not move on their own.

LIMITATIONS

input : "A penguin eats food"

This perception is UNREASONABLE

REASONING:

A penguin is an animal that lives in Antartica and eats enough to eat. Food is an animal that lives in the refrigerator and eats food.

So a penguin cannot reasonably be located at the same location as food.

METHODS (II)

A MAILBOX CROSSING THE STREET

EXPLAINING PERCEPTION (II)

A mailbox crossing the street

EXPLAINING PERCEPTION (II)

A mailbox crossing the street during a hurricane

This perception is reasonable.

Although a mailbox cannot move on its own, a hurricane can propel a stationary object to move. So it is reasonable for a mailbox to cross the street

MONITOR IN DEVELOPMENT

Reasonableness of Vehicle Actions

	Vehicle Perception	Driving Tactics	Vehicle State
	 Red Pedestrian Yellow Green 	 Wait Go forward Go right 	 Stopped Moving slowly Moving quickly
The vehicle waits at a red lig	ht		
		Reasonable?	
This perception is REASONA 	ABLE === hicle to wait		

INTERNAL STORIES

Weather sensor	Perception
Hurricane	A mailbox crossing the street
	Premises
Premises (humieses has high uniteda)	(mailbox, IsA, heavy object)
(nurricane, nas, nign winds)	(mailbox, moves, Faise) (mailbox, LocatedNear, street)

INTERNAL STORIES

Weather sensor	Perception
Hurricane	A mailbox crossing the street
	Premises
Premises	(mailbox, IsA, heavy object)
(hurricane, has, high winds)	(mailbox, moves, False) (mailbox, LocatedNear, street)

INTERNAL STORIES

box crossing the street
box crossing the street
Premises
box, IsA, heavy object)
Ibox, moves, False)
ox, LocatedNear, street)

internal story: high winds can cause heavy objects to move

FUTURE WORK

- Explaining non-local inconsistencies
- Explaining internal stories and premises
- Incorporating into full-system design

relevance

CONTRIBUTIONS

- Ex-post-facto explanations
- Explanations of reasonableness for language descriptions of perception
 - Incorporating monitor into a working autonomous simulation.

LESS FRUSTRATION, MORE EXPLANATION

SOFTWARE USED

- Reasoning software
 - MIT/GNU scheme (free software)
 - Art of the Propagator System (free software)
 - Python (open-source)
 - ConceptNet (CC BY-SA 4.0)
- Simulation Unity game engine and Carla (open-source)