Systems Engineering and the Sins of Complex Software

OSADL
Nicholas Mc Guire
<safety@osadl.org>

April 13, 2018
Why do we need regulation?

- To establish a common problem space definition
- To gain a common understanding of context and scope
- To ensure peer-review of solution space (industry, academia, public)
Why do we need regulation?

- To establish a common problem space definition
- To gain a common understanding of context and scope
- To ensure peer-review of solution space (industry, academia, public)

Goal:

- Wide acceptance of technology in the technical community and society
- Defined limits and accepted responsibilities
Acceptance

Jumping orders of magnitude in acceptance?

- 1.2M people killed in car accidents per year worldwide
- 0-1k people killed in civil aircraft per year

What gets more attention in the media?
Acceptance

Jumping orders of magnitude in acceptance?

- 1.2M people killed in car accidents per year worldwide
- 0-1k people killed in civil aircraft per year

What gets more attention in the media?

Controllability is a subjective issue - never the less it determines perceived responsibility and risk acceptance.
What’s in a standard?

- Agreed upon **consolidated state-of-the-art**: encoded as processes, measures and techniques fit to the problem space.
What’s in a standard?

Agreed upon **consolidated state-of-the-art**: encoded as processes, measures and techniques fit to the problem space

What’s the state-of-the-art for Autonomous Vehicles?
What‘s in a standard ?

- Agreed upon **consolidated state-of-the-art**: encoded as processes, measures and techniques fit to the problem space

 What‘s the state-of-the-art for Autonomous Vehicles ?

 What‘s the state-of-the-art for verifying AI/ML ?
What’s wrong with ISO 26262

- Table driven safety
- Only covers low complexity systems
- Assumes software correctness implies behavioral correctness
- Software is considered to be deterministic
- Assumes a driver is in control
- ISO 26262 was classical micro-controllers and automotive applications consolidated into the then state-of-the-art for low complexity systems.
What’s wrong with ISO 26262

- Table driven safety
- Only covers low complexity systems
- Assumes software correctness implies behavioral correctness
- Software is considered to be deterministic
- Assumes a driver is in control
- ISO 26262 was classical micro-controllers and automotive applications consolidated into the then state-of-the-art for low complexity systems.

No standard — no (verifiable) safety properties
What’s wrong with ISO 26262

- Table driven safety
- Only covers low complexity systems
- Assumes software correctness implies behavioral correctness
- Software is considered to be deterministic
- Assumes a driver is in control
- ISO 26262 was classical micro-controllers and automotive applications consolidated into the then state-of-the-art for low complexity systems.

No standard — no (verifiable) safety properties

Wrong standard — no safety either
What is the state-of-the-art?

- That's really an open issue for autonomous vehicles - nobody knows!
- Fundamental issues are unresolved (nondeterministic algorithms, FP-usage, reproducibility,...)
- Applicable domain standards do not exist yet
- Accepted procedures for establishing tolerable safety not agreed (if they exist at all)
- Expected behavior of systems - not agreed - not even understood
- V&V of AI/ML ? indicators and methods - not known
Classes of Safe Systems

- **Type A System (low complexity)**
 1. The failure modes are well-defined; and
 2. The behavior under fault conditions can be completely defined

- **Type B Systems (complex)**
 1. The failure modes are not well-defined; or
 2. The behavior under fault conditions cannot be completely defined

In autonomous systems the correlation between software correctness and system behavior is essentially lost.

(c) Nicholas Mc Guire (OSADL)
Classes of Safe Systems

- **Type A System** (low complexity)
 1. The failure modes are well-defined; and
 2. The behavior under fault conditions can be completely defined

- **Type B Systems** (complex)
 1. The failure modes are not well-defined; or
 2. The behavior under fault conditions cannot be completely defined

- **Type C Systems** ? (high complexity ?)
 1. What constitutes a failure is not well-understood; or
 2. The behavior under absence of (SW/HW) faults cannot be completely defined

In autonomous systems the correlation between software correctness and system behavior is essentially lost.
Common fallacies

• Using wrong standards and Checklist safety
• Functional focus - safety as post-processing event
• Hazard mitigation before hazard elimination
• Keep it simple at the code rather than the design level
• Correct code does not imply correctness of behavior in AI
• Focus on local mitigations rather than system scope
• Focus on confirmation of acceptability rather than risk assessment
• Building compliant rather than safe system
• Separation of safety competence and decision authority
• Lack of communication with respect to safety issues
• Lack of responsibility for and awareness of safety issues
• Time/market and management pressure: functional focus
• ...
Why this - What changed?

- Totally different solution space - data & behavior -> evolution
- Fundamental change of software capabilities needed
- Change of legal environment
- Novel, untested, unexplored, not understood technologies
- It seems nobody bothered to build a solid foundation

And then there is this complexity problem - nobody has a clue how to manage this level of complexity for safety - absolutely nobody.
What are some mitigations?

- (finally) Introduce system-safety engineering in automotive industry - there is no such things as SEooC for novel systems.
- Establish and **then** agree on the state-of-the-art
- Develop a set of suitable standards
- Jointly define a legal environment: Vienna Convention on Road Traffic++, security ?, data ownership ?
- Build up a safety awareness/culture around autonomy related technologies in academia and industry
- Educate the public (including politicians) on benefits **and** safety risks
- ...

© Nicholas Mc Guire (OSADL) April 13, 2018 10 / 12
Conclusion

- Safe processes depends on an established state-of-the-art
- Coordination and standardization is mandatory for safety
- The existing measures and techniques/metrics will not do
- A set of domain standards for autonomous vehicles needed
- Establishing new methods is research and has no guaranteed time-line - it’s done when it’s done - product time-lines are not relevant for safety

Safety in autonomous vehicles is not going to be achieved as an add-on to a conglomerate of unverifiable assist-systems.
Rant

- Rail industry worked on autonomy for 50 years and brought it into service in safe step-by-step mode - did you hear much about this in the news?
- If business interests decide safety it will be a (continued) bloody mess - with nobody taking responsibility.
- Lets iterartively build a solid foundations first — understood Technology, agreed Standards and sound Regulations.
Rant

- Rail industry worked on autonomy for 50 years and brought it into service in safe step-by-step mode - did you hear much about this in the news?
- If business interests decide safety it will be a (continued) bloody mess - with nobody taking responsibility.
- Let's iteratively build a solid foundations first — understood Technology, agreed Standards and sound Regulations.

Expect the first safe autonomous vehicles on the road in 2040+

Thanks!